Boosting First-Order Learning

نویسنده

  • J. Ross Quinlan
چکیده

Several empirical studies have connrmed that boosting class-iier-learning systems can lead to substantial improvements in predictive accuracy. This paper reports early experimental results from applying boosting to ffoil, a rst-order system that constructs deenitions of functional relations. Although the evidence is less convincing than that for propositional-level learning systems, it suggests that boosting will also prove beneecial for rst-order induction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives

Boosting [6,9,12,15,16] is an extremely successful and popular supervised learning technique that combines multiple “weak” learners into a more powerful “committee.” AdaBoost [7, 12, 16], developed in the context of classification, is one of the earliest and most influential boosting algorithms. In our paper [5], we analyze boosting algorithms in linear regression [3,8,9] from the perspective o...

متن کامل

Chinese Named Entity Recognition with Cascaded Hybrid Model

We propose a high-performance cascaded hybrid model for Chinese NER. Firstly, we use Boosting, a standard and theoretically wellfounded machine learning method to combine a set of weak classifiers together into a base system. Secondly, we introduce various types of heuristic human knowledge into Markov Logic Networks (MLNs), an effective combination of first-order logic and probabilistic graphi...

متن کامل

Boosting Descriptive ILP for Predictive Learning in Bioinformatics

Boosting is an established propositional learning method to promote the predictive accuracy of weak learning algorithms, and has achieved much empirical success. However, there have been relatively few efforts to apply boosting to Inductive Logic Programming (ILP) approaches. We investigate the use of boosting descriptive ILP systems, by proposing a novel algorithm for generating classification...

متن کامل

AdaBoost and Forward Stagewise Regression are First-Order Convex Optimization Methods

Boosting methods are highly popular and effective supervised learning methods which combine weak learners into a single accurate model with good statistical performance. In this paper, we analyze two well-known boosting methods, AdaBoost and Incremental Forward Stagewise Regression (FSε), by establishing their precise connections to the Mirror Descent algorithm, which is a first-order method in...

متن کامل

Boosting Descriptive ILP for Predictive Learning

Inductive Logic Programming has been very successful in application to multirelational predictive tasks. Sophisticated predictive ILP systems, such as Progol and foil, can achieve high predictive accuracy, while the learning results remain understandable. Although boosting [1] is an established method to promote predictive accuracy of weak algorithms, there have been relatively few efforts to a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996